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Abstract. Time range query is essential to facilitate a wide range of
blockchain applications such as data provenance in the supply chain.
Existing blockchain systems adopt the storage-consuming tree-based in-
dex structure for better query performance, however, fail to efficiently
work for most blockchain nodes with limited resources. In this paper, we
propose Anole, a lightweight and verifiable time range query mechanism,
to present the feasibility of building up a learned-based index to achieve
high performance and low storage costs on blockchain systems. The key
idea of Anole is to exploit the temporal characteristics of blockchain data
distribution and design a tailored lightweight index to reduce storage
costs. Moreover, it uses a digital signature to guarantee the correctness
and completeness of query results by considering the learned index’s er-
ror bounds, and applies batch verification to further improve verification
performance. Experimental results demonstrate that Anole improves the
query performance by up to 10× and reduces the storage overhead by
99.4% compared with the state-of-the-art vChain+.

Keywords: Blockchain · Time range query · Learned index · Lightweight.

1 Introduction

Blockchain has become a promising distributed ledger technology for multi-
ple parties to engage and share a decentralized tamper-proof database [13].
Blockchain systems record the transactions between these parties in timestamped
and chronologically linked data blocks [11]. Time range query is the most fun-
damental query type on blockchain systems that retrieves data blocks within
a given time interval. It has played a pivotal role in supporting trustworthy
data provenance and traceability for many crucial applications, such as supply
chain [8], smart manufacturing [9], healthcare [12]. For example, blockchain time
range query can support efficient and trustworthy contact tracing, vaccine lo-
gistics, and donations during the COVID-19 outbreak. Donors hope to query
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about their donations (Bitcoin or Ethereum, etc.) within a given time inter-
val, so as to know the whereabouts of the donation funds. The client sends Q
= ([Addr:2AC03E7F], [2022.06.18, 2022.09.17], [in/out]) to get the transactions
for address 2AC03E7F from June 18, 2022, to September 17, 2022.

A lightweight and verifiable time range query mechanism is desirable and
important for blockchain systems. While blockchain full nodes (e.g., resource-rich
servers) store the ever-growing immutable data blocks, they can retrieve reliable
results upon the full history. In practice, however, most users on blockchain are
light nodes (e.g., mobile users with constrained resources), who can only rely
on full nodes by proceeding with remote queries. Since the full nodes can be
malicious in the trustless blockchain, light nodes must further verify the query
results to ensure the correctness and completeness. Moreover, the indexing for
accelerating query processing will bring in additional and even unacceptable
storage overhead [24].

Prior studies [14, 18, 20] have exploited the tree-based index structure for
facilitating verifiable blockchain Boolean range query. The authors built a ver-
ification object (VO) set and reconstructed the Merkle tree root to verify the
query results. Since the tree-based indexing query mechanism trades off storing
the large-size VO for query performance, it is not affordable for lightweight nodes
with limited storage space. Furthermore, it incurs an excessively time-consuming
traverse process (i.e., each tree element must be equally traversed), leading to
significant performance degradation.

In this paper, we explore an alternative approach towards lightweight and
verifiable blockchain time range query. Our key insight is that the data blocks
of a blockchain exhibit a temporal distribution by nature, as the time interval
between block generation is determined by the underlying consensus protocol.
For example, the Bitcoin system generates a block about every ten minutes
with the Proof-of-Work (PoW) consensus. It allows us to build a regression
function between the timestamp (i.e., key) and block height (i.e., the value of
the position). Inspired by [19], our design takes the advantage of learned index
that supports efficient time range query tailored to the blockchain data.

However, it is challenging to build up an appropriate blockchain learned index
that can simultaneously achieve high performance and low storage costs. The
first challenge 1 is how to build a novel index structure based on the temporal
distribution of blockchain. The malicious operations in a trustless blockchain
system can prohibit the procedure of block generation, such as the selfish mining
attacks [2,10] that delay publication of blocks (i.e., 5% of blocks were generated
for more than 30 minutes). The second challenge 2 is even after we successfully
construct a tailored learned index, how to design a lightweight and efficient
method to verify the query results? Because of diverse underlying storage models,
it is not possible to directly apply the tree-based VO on learned index. The
learned index can locate the position of the query data in a list, but it is difficult
to map to the position in the merkle hash tree (MHT) to get VO. Hence, the
conventional MHT-based verification approaches are not suitable for learned
index structures.
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To address the above challenges, we present Anole, a lightweight and verifi-
able time range query mechanism that explores the use of learned index struc-
tures on blockchain systems. It includes three major components: (1) To auto-
matically learn the relationship between the timestamp and block height, Anole
leverages piecewise linear functions to build a novel layered learned index struc-
ture, which can reduce the storage cost by orders of magnitude by storing func-
tion argument. (2) Anole proposes the aggregate signature that greatly reduces
the VO size and alleviates the burden of data transmission in the blockchain net-
work compared to the classical tree-based approaches. (3) We further develop
a lightweight batch verification for ensuring the correctness and completeness,
while retaining high performance. We have implemented a fully functional, open-
sourced query prototype of Anole.

In summary, we make the following contributions:

– We propose Anole, a novel learned index-based lightweight and efficient
mechanism for blockchain time range query. To the best of our knowledge,
this is the first layered learned index structure that can automatically bound
the query results by temporal distribution patterns. Moreover, it can reduce
the storage overhead of building indexes, and improve query performance.

– We also develop two optimizations - aggregation signature and batch verifi-
cation - which significantly reduce the verification overhead. It not only keeps
the VO size lightweight and guarantees the verifiability of query results.

– Experimental results demonstrate that Anole significantly outperforms the
state-of-the-art vChain+ [18] in terms of storage overhead and query perfor-
mance.

The rest of this paper is organized as follows. We outline the related work
in Section 2, prior to introducing the system overview of Anole in Section 3.
Section 4 and Section 5 present the detailed design of layered learned index and
lightweight verification process of Anole. Comprehensive evaluation is shown in
Section 6. Finally, we conclude this work in Section 7.

2 Related Work

In this section, we review the most relevant range query techniques over tradi-
tional database and discuss state-of-the-art blockchain verifiable query mecha-
nisms in Table 1.

Database Range Queries. Considering the impact of data partitioning on
large-scale data processing, Yue et al. [22] proposed a time-based partitioning
technology to provide range query operations on large-scale trajectory data. To
further improve the query efficiency, learned-based techniques for data query
are used in database [1,17]. The structure of the FITing-Tree [7] is very similar
to the traditional B+ tree, and the difference is that its leaf nodes store the
start key and slope of each segment. PGM-index [6] optimized FITing-Tree from
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data segmentation, insertion, and deletion, which can achieve better query and
update time efficiency. ALEX [5] proposed another scheme to support insertion
operation in which a newly arrived key keeps the array in order at the predicted
position gap. These learned indexes can efficiently support range query oper-
ations in traditional databases but fail to offer verifiable queries in a trustless
blockchain environment with malicious nodes.

Table 1. The comparison of Anole with existing query mechanisms

Category Approach Time
range

Lightweight Verification
Index size VO size Correctness Completeness

Distributed
database

FITing-Tree [7] ✔ ✔ ✖ ✔ ✖

PGM-index [6] ✔ ✔ ✖ ✔ ✖

ALEX [5] ✔ ✔ ✖ ✔ ✖

Blockchain

LineageChain [15] ○ ✖ ○ ✔ ✔

GEM2-Tree [23] ✖ ○ ✖ ✔ ✔

P2B-Trace [14] ○ ✖ ○ ✔ ○
LVQ [4] ✖ ○ ○ ✔ ✔

vChain+ [18] ✔ ○ ○ ✔ ✔

Anole ✔ ✔ ✔ ✔ ✔

NOTE: ✔ : support ○: poor support ✖ : not support

Blockchain Verifiable Queries. Efficient query and processing of a large num-
ber of time series data have attracted unprecedented attention from both indus-
try and academia [21]. Shao et al. [16] presented an authentication range query
scheme based on Trusted Execution Environment (TEE). However, due to the
limited secure memory space, existing TEEs cannot easily handle large-scale ap-
plications. Besides, GEM2-tree [23] designed a two-level index structure, which is
gas-efficient and effective in supporting authenticated queries. LVQ [4] presented
a new Bloom filter based on sorted Merkle Tree to achieve lightweight verifiable
but not support time range query. Unfortunately, the maintenance cost of the
tree-based authenticated data structure (ADS) is relatively heavy for light nodes
to support the verification procedure. Moreover, LineageChain [15] provided a
new skip list index to support efficient provenance. To overcome the practical
problem of public key management in vChain, vChain+ [18] proposed a new
sliding window accumulator (SWA) to reduce the public key storage overhead
of accumulators. However, their design takes up a large amount of storage space
for VO and computing overhead, which requires high node configuration.

3 System Overview

Fig. 1 shows the overview of Anole system consisting of three actors: miners,
full nodes, and clients. The miners, responsible for packaging data into blocks
and appending new blocks to the blockchain, are considered trusted third par-
ties because of the rewarding scheme of the blockchain system. The full nodes
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store both block headers and data, responsible for processing the client’s query
requests. When the clients send a query request, the full nodes take advantage
of the learned index to find the location of request data, and then return the
query result and corresponding digital signature as VO for the clients to verify.
The clients, who store only block headers, use the public key and VO to check
the completeness and correctness of the query result.

Fig. 1. The system overview of Anole

Suppose a client C submits a request Q to a full node for retrieving the
transactions during last two weeks on blockchain (Step ❶ in Fig. 1). To ensure
query efficiency, the full node utilizes learned index for retrieval, that is, the block
height range of the element is quickly located through the inter-block learned
index, and the query results that meet the conditions are searched through the
intra-block learned index (step ❷). Multiple digital signatures are combined into
one aggregated signature to reduce the overall VO size. After query execution,
the full node assembles a tuple, including the result and the aggregated signature
(AggSig), and sends it to the client (Step ❸). Upon receiving all the results and
aggregated signature from the full node, the client obtains the corresponding
public keys by synchronizing the block header to verify the returned results and
VO in batch (Step ❹).

4 Learned Index-based Time Range Queries

In this section, we propose a layered learned index to meet challenge 1, which
captures mapping relationships between timestamps and block height. Further-
more, we discuss efficient query execution and theoretical analysis of error bound.

4.1 Layered Learned Index

Layer 1: Inter-block Learned Index. The main idea of our method is to
extract the mapping relationship between the data through a piecewise linear
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function. We propose a dynamic piecewise linear regression algorithm based on
the distribution of timestamp and block height, which is linear in run time. Anole
introduces error bound to ensure that all the data of the learned index can be
retrieved, including the occurrence of outliers that deviate from the normal dis-
tribution. More specifically, we define the error bounds for dynamic piecewise
linear regression by three parallel lines: the start function that a line formed by
two starting points, the upper boundary function that the regression function
plus the error bound, and the lower boundary function that the regression func-
tion minus the error bound as shown in Fig. 2. Points 1 and 2 are the two basic
points that form the starting function. Point 3 is inside the two boundaries, and
the current regression does not need to be updated. As point 4 is outside the
updated regression boundary (i.e., the actual value of point 4 is under the lower
boundary based on the error bound µ), a new piecewise regression function will
be generated. The combination of these two boundary functions gives the edges
of the regression function. Intuitively, the two boundary functions represent a
sequence of feasible linear regressors around the beginning of the regression func-
tion.

Fig. 2. The dynamic regression of inter-
block learned index

Fig. 3. The mapping of intra-block
learned index

Layer 2: Intra-block Learned Index. One block usually contains numerous
transactions (e.g., bitcoin averages over 1,000 transactions per block). For an
active address, in addition to having multiple transactions between different
blocks, there may also be multiple transactions within a block. Based on this
observation, we construct an intra-block learned index to optimize the query
time in block. The intra-block index is constructed by blockchain miners in
an aggregated manner based on identical address transactions. Fig. 3 shows
the block with an intra-block index. It sorts and aggregates the transactions
corresponding to each address, and the first transaction of the identical address
is used as the aggregation point (e.g., tx1 for addr1, and tx4 for addr2). Then,
the intra-block learned index is constructed based on the sorted transactions and
different aggregation points. In particular, since the amount of data in a single
block is small and does not need to be updated, the error bound of intra-block
learned index can be set to 0 to achieve precise positioning.
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4.2 Efficient Query Execution

In this section, we start by considering a particular timestamp and focusing on
the point query with learned index for ease of illustration. Then we extend it
to the time range query condition to show how to process time range query re-
quests efficiently. Anole maintains the parameters of each segment, including the
starting point, the slope, and the intercept. The timestamp value is an increment
property, hence we use a variant of the binary search algorithm to quickly search
the segment where the key value is located. The time complexity is O(log2(n))
of searching for the specific segment, where n is the length of segment list. Once
the segment is found with the corresponding timestamp, we can locate the block
height of the given timestamp by calculating the function in this segment. Re-
call that when creating a piecewise linear function, the actual position of the
key is kept in a range (i.e., error bound µ) from the position calculated by the
regression function. According to the slope and intercept parameter of segment
s, we can obtain the predicted position of the given timestamp t by calculating
the following equation:

predh(t) = t ∗ s.slope+ s.intercept (1)

The true location of the elements can be restricted to the error bound once the
learned index is constructed by dynamic piecewise linear function. Consequently,
after the predicted position is obtained by calculation, sequential traversal is
used to perform a local retrieval for the blocks within the error bound. The
true position of the given timestamp t and error bound µ is calculated by the
following equation:

trueh(t) ∈ [predh(t)− µ, predh(t) + µ] (2)

Time range query is a special case of range query that has the subsidiary
conditions. It requires to check whether each item is within a particular given
time range as shown in Algorithm 1. Hence, unlike point query, for a time range
query, the condition has a great impact on the total running time and the result
size. The main difference between the two query types is that the time range
query requires finding two endpoints of the given time range. Since the segment
satisfies the given error bound, the overhead of finding the key within the segment
can be restricted. To be more precise, the time complexity of searching keys
within the bound is O(1 + 2 ∗ µ). The linear function either points to the store
key consecutively in the same segment or exists in adjacent segments, where the
segmented points are sorted by value. Therefore, Anole can first simply start the
scan at the start point position of the time range within the error bound, and
then traverse the adjacent segments to the end point of the range.
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Algorithm 1: Time Range Query
input : Q = (addr,< t1, t2 >)
output: R = (TxSet, V O)

1 (seg1, seg2)←− V BS(t1, t2);
2 pre_hi ←− segi.slope ∗ ti + segi.intercept (i = 1, 2);
3 for h in (pred_h1 − error)..(pred_h2 + error) do
4 Tx.id←− intra_fn(addr);
5 if Tx exist then
6 TxSet = TxSet.append(Tx);
7 V O = aggr(Tx.sign);
8 else
9 TxSet = prior(Tx.id) + next(Tx.id);

10 V O = prior(Tx.id).sign+ next(Tx.id).sign

11 end
12 end
13 return R = (TxSet, V O)

4.3 Theoretical Analysis

The error bound has an impact on the query efficiency and the size of the
index. Inevitably, the following question naturally arises: how to choose the error
bound? To deal with this trade-off, we define an assessment model to choose a
“suitable” error bound during the learned index construction. There are two
essential indicators that can be optimized regarding the error bound: the query
performance impact on the system (i.e., query latency) and the storage overhead
of the system (i.e., index size).

The value of error bound affects the segment’s generation and the searching
precision (i.e., the large error bound has fewer segments produced and lower
precision). We let Nµ denote the segment’s amount. The query latency for com-
putation estimated by the error bound µ can be calculated by the following
equation, where α is the number of function parameters, β is the intra-block
transaction data, and c is the system delay of the instruction on given hardware
(e.g., 10ns).

Latency(µ) = c ∗ (log2(Nµ) + α+ 2µ ∗ β) (3)

For a given error bound µ, we can evaluate the storage cost of the learned
index (in Byte) using the following equation. The first part of the formula is
the size of the index parameter (i.e., the slope and intercept parameter, each 2
bytes), and the second part is the space occupied by the digital signature within
the error bound (64 bytes/block), which is discussed in the verification section.

Storage(µ) = Nµ ∗ α ∗ 2B + 2µ ∗ 64B (4)

Based on these two cost estimation formulas, it can be obtained that the min-
imum storage for the learned index that meets a specific latency demand L(ms)
or the minimum error bound for the learned index that satisfies a given storage
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budget S(bytes). Therefore, the most suitable µ is given by the following expres-
sion, where E denotes a set of possible error bounds (e.g., E = {1, 2, 5, 10}).

µ = argmin

{
Storage(µ) | Latency(µ) ≤ L

Latency(µ) | Storage(µ) ≤ S
, µ ∈ E (5)

5 Lightweight Verification

In this section, we propose a lightweight verification scheme based on the learned
index and digital signatures to meet challenge 2, which omits the step of re-
traversing in MHT and enables dynamic half-aggregation to reduce the VO size.
Furthermore, we optimize the digital signatures to achieve efficient batch verifi-
cation on the basis of ensuring security to remedy the defect of long verification
time.

5.1 Lightweight VO Design

Aggregated Signature. We divide the aggregated signatures into two parts:
inter-block signature aggregation and intra-block signature aggregation. Intra-
block signature aggregation is done by miners when packing blocks. As in the
example shown in Fig. 4, miners bundle transactions with the same address, e.g.,
join all transactions with an address of 452daksm, O = o5||o6||o7||o8||o9. Then
miners sign the object O to obtain the signature (R, s). In this way, it greatly
reduces the size of the verification object in a block, as each block returns only
one signature (R, s) for a certain address. To further reduce the size of VO,
Anole proposes a dynamic inter-block half-aggregation technique. As the block
height will change with the time range, Anole assigns the inter-block signature
aggregation to the full node. With this method, the full node can dynamically
aggregate signatures according to the query request and not return redundant
data for verification. The implementation is shown in Fig. 5, where λ is the
security parameter, g is the generator of a cyclic group G, (Pk, sk) is the keypair
where Pk is the public key and sk is the private key, σ is the signature which
can be decomposed into (R, s), and m is the message. It is worth noting that the
coefficient L can effectively prevent a malicious full node from tampering with
query data or signatures, as it commits to each signature, message, and public
key.

Batch Verification. Compared with the MHT-based authentication method,
the digital signature eliminates unnecessary data and greatly reduces the size
of the verification object, but it pays a price in terms of verification time. To
solve this problem, we design a batch verification method based on the Straus
algorithm [3] to speed up the verification. The basic authentication method is
to verify the signature of query results according to the aggregated signature by
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Fig. 4. Example of intra-block aggre-
gated signatures Fig. 5. The scheme of inter-block aggre-

gated schnorr signature

the following equation:

gs̃ =

n∏
i=0

(RiXi
ei)ai (6)

We analyze the computation overhead of each step in verification and ob-
serve that exponentiation in a cyclic group is time-consuming. To deal with this
problem, we combine verification with the Straus algorithm to reduce the time
overhead of exponentiation. To describe more formally, we transform the right
side of the verification equation into the expression:

n∏
i=0

(RiXi
ei)ai =

2n∏
i=0

M ti
i (7)

The verification algorithm performs the following. First, we choose a radix 2c

for the algorithm to compute. Generally, c = 5 is appropriate for 256-bit scalars.
Second, we precompute the quantity Mi, 2Mi, ..., (2

c−1)Mi to reduce the cost of
subsequent calculations. Third, we recursively compute ⌊ti/2c⌋ until ti = 0 and
record the remainder Nj =

∏n
i=0 M

ti mod 2c

i , where j is the number of divisions
performed. Finally, we can recursively compute the result R by Rj−1 = Rj

2cNj

until j = 1. In this way, the total cost of identifying the forgeries among n
signatures at a 2b security level is compressed from roughly 2bn multiplications
to roughly (2 + 8/lgb)nb multiplications.

5.2 Verifiable Query Processing

In this section, we focus on how to generate the verification object for clients
to verify the completeness and correctness of query results. We use concrete
examples to illustrate the security of the validation process. The query type of
Anole is the time range query for a specific address, which is in the form of
Q =< [t1, t2], key >.
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Completeness. The completeness proof generated by full nodes consists of
two aspects: timestamp and the key of data. For timestamp, the full node re-
turns the left and right boundaries to prove that the query results contain all
blocks satisfied the requirement for timestamp. To process the query request, the
full node uses the inter-block learned index to locate the block heights (h1, h2)
corresponding to t1 and t2 respectively. Then, check the timestamp of the block
height in the interval [h1 − µ− 1, h1 + µ+ 1] and [h2 − µ− 1, h2 + µ+ 1], where
µ is the error bound of the intra-learned index. In this way, the full node can
easily find the left and right boundaries (hl, hr) and add them to VO. Note
that hl and hr are the maximum block height with the timestamp smaller than
t1 and the minimum block height with the timestamp larger than t2. Fig. 6
depicts an example of completeness proof for timestamp when the time range
query Q =< [20210513, 20210514], addr >. According to the calculation results
in the interval 2([h1 − 2, h1 + 2], µ = 1), we find the maximum block height
114503 as left boundary hl, of which the timestamp is smaller than 20210513.
We can find hr in the same way and the completeness proof for the timestamp
is [hl = 114503, hr = 114508].

Fig. 6. The completeness proof of timestamp

For the part of key (i.e., address), we divide the completeness proof into two
aspects: existence proof and inexistence proof. Existence proof should be able to
prove that all the query results are exactly existed inside the block and no key-
related transactions are omitted. Since miners are considered as trusted third
parties, the aggregated signature (Ri, si) that miners generate can be used as
the existence proof for the transactions in block i.

For the inexistence proof, we also use the boundary determination principle
to prove the key is inexistent in a block. To generate the inexistence proof,
we require miners to add an additional attribute p to each transaction when
they sort the block data and package the block. The attribute p represents the
position of the transaction in the block. When the client queries for a particular
transaction, the full node uses the learned index to find the position p1, where it
would be if it exists. As the transactions are sorted lexicographically during block
packaging, the full node only returns the corresponding signatures of transactions
with positions p1 − 1 and p1 as boundaries (i.e., the value of keyp1

is greater
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than the value of keyquery). To keep the VO lightweight, we only return a single
signature and transaction for each boundary as inexistence proof.

Correctness. Correctness requires that all the query results are satisfied and
correct. Consider the VO is < h1, h2, ssum, (Raddr)height ∗ n) >. To verify the
correctness of query results, the client checks the timestamps of the block in
[h1, h2] and the key of query results to ensure query results are satisfied. Then,
the client can achieve batch verification by calculating the equation 6. Due to
the uncontrollable discrete logarithm problem and collision resistance of hash
functions, it is hard for full nodes to forge signatures, especially when the private
key of signature is not known. It means the query results are correct if the
verification is passed.

6 Evaluation

The public Bitcoin data set is used in the experiments, which is extracted from
the Bitcoin system from June 18, 2022, to September 17, 2022. It contains 13361
blocks, and the transaction is reorganized as <block height, address, in/out,
amount, timestamp>. The miners sign the data and store the public key in the
block header (32 bytes). We perform experiments on a server Intel Xeon (Ice
Lake) Platinum 8369B with 3.5GHz CPUs, running CentOS 7.6 with 16 cores
and 32 GB memory, and the Anole system is programmed in Rust language.

6.1 Index Construction Cost

Fig.7 reveals the index construction overhead and block generation for the miner
with the different number of blocks, involving the CPU running time and the
storage cost of index. In Anole, the number of blocks is set from 256 to 13361
with the error bound as 2. For vChain+, we set the same block size, and the
parameters of fanout and time window for SWA-B+-tree are set to 4 and 2
respectively. The error bound of learned index is set to 2 according to the impact
analysis in the following section. From Fig.7(a), we can see that the running
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Fig. 7. The comparison of index construction cost

time of index construction in Anole is shorter than vChain+ and less than 4
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times during the number of blocks is under 13361. Beyond that, Anole yields
a smaller index structure compared with vChain+, as shown in Fig.7(b). This
is not unexpected because the accumulator employed in vChain+ takes a lot of
storage space compared with the function parameters used in Anole to realize
data location.

6.2 Impact of Error Bounds

In the following, we assess the effects of various error bounds on the CPU pro-
cessing time, index size, and latency performance of point queries. We conduct
the scalability experiments and utilize the data set from 2048 to 13361 blocks.
Fig.8(a) and Fig.8(b) show the performance of CPU time and index size with
error bounds varied from 1 to 10. It shows that the CPU time remains almost
constant as the error bound increases, and the index size degrades from fast to
slow with the increase of error bound. Next, we evaluate the impact of error
bounds on latency. Fig.8(c) reveals the query latency of different block heights
and the error bound varies from 1 to 10 with the maximum of blocks at 13361.
We can observe that the query latency oscillates slightly when the error bound
is less than 3, and then increases with the error bound because more block
traversals are needed within a large error bound.
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Fig. 8. The impact of error bounds (with the different number of blocks)

6.3 Query Performance

Fig.9 and Fig.10 show the point and time range query performance of Anole
during the block height from 1024 to 13361 and the time range from 4 to 24 hours.
Three types of query metrics, including query latency, verification time, and VO
size are compared. Anole keeps the point query latency within 0.1 seconds as
the block height increases. It has 1/100 latency compared with Anole w/o inter-
block learned index and 1/10 lower than vChain+ in Fig. 9(a), respectively.
When processing time range queries, we observe that Anole and Anole with
inter-block index greatly exceed vChain+ when the time range is under 8 hours
in Fig. 10(a). The reason is that the inter-block learned index can quickly locate
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the time range, and combine the intra-block index to find elements. As the
verification process for Anole in Fig.9(b) and Fig.9(c), the aggregated signature
is returned when the query result exists, which reduces the verification time and
VO size. In vChain+, the verification object is generated by ACC.Prove, which
includes lots of set operations. The reason we can summarize is that the size
of digital signature in Anole is smaller than the tree-based ADS generated by
vChain+. As shown in Fig.10(b) and Fig.10(c), when the time range is within
24, the verification time and VO size of Anole are under 0.05s and 5KB, but
these performance indicators of vChain+ are 0.6s and 17MB, respectively. We
also experiment the throughput of Anole w/o aggregation, which is 70% of Anole
as the large VO size with single signature leads to heavy network overhead.
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Fig. 9. The comparison of point query performance
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Fig. 10. The comparison of range query performance

7 Conclusion

We present Anole, the first lightweight and verifiable learned index-based blockchain
time range query mechanism. Anole incorporates three key designs: (1) the lay-
ered learned index that captures the dynamic temporal distribution of data
blocks in the untrusted blockchain environment; (2) the aggregated digital sig-
nature technique to reduce the size of the returned verifiable objects; and (3)
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the design of batch verification to speed up verification while guaranteeing the
integrity and correctness of query results. Evaluation of our Anole prototype
demonstrates that it achieves 10× average speedup and significantly reduces the
storage overhead by 99.4%, in comparison with the state-of-the-art vChain+. We
hope that our first step in introducing the learned index structures in blockchain
query will seed the ground for further exploration on this topic.
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